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ABSTRACT 

We prove that any ordered field can be extended to one for which every 
decreasing sequence of bounded closed intervals, of any length, has a 
nonempty intersection; equivalently, there are no Dedekind cuts with 
equal cofinality from both sides. 

1. I n t r o d u c t i o n  

Laszlo Csirmaz raised the question of the existence of nonarchimedean ordered 

fields with the following completeness property: any decreasing sequence of 

closed bounded intervals, of any ordinal length, has nonempty intersection. 

We will refer to such fields as s y m m e t r i c a l l y  c o m p l e t e  for reasons indicated 

below. 

THEOREM 1.1: Let K be an arbitrary ordered field. Then there is a 

symmetrically complete real dosed field containing K.  

The construction shows that there is even a "symmetric-closure" in a natural 

sense, and that the cardinality may be taken to be at most 2 IKl++sl . 
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2. Rea l  closed fields 

Any ordered field embeds in a real closed field, and in fact has a unique real 

closure. We will find it convenient to work mainly with real closed fields through- 

out. Accordingly, we will need various properties of real closed fields. We as- 

sume some familiarity with quantifier elimination, real closure, and the like, 

and we use the following consequence of o-minimality. (Readers unfamiliar with 

o-minimality in general may simply remain in the context of real closed fields, 

or, in geometrical language, semialgebraic geometry.) 

FACT 2.1: Let K be a real closed field, and let f be a parametrically defin- 

able function of one variable defined over K.  Then f is piecewise monotonic, 

with each piece either constant or strictly monotonic; this holds uniformly and 

definably in definable families, with a bound on the number of pieces required, 

and with each piece an internal whose endpoints are definable from the defining 

parameters for the function. 

2.1. CUTS. 

Definition 2.2: 
(1) A cut  in a real closed field K is a pair C = (C- ,  C +) with K the disjoint 

union of C -  and C +, and C -  < C +. The cut is a D e d e k i n d  cu t  if both 

sides are nonempty, and C -  has no maximum, while C + has no minimum. 

(2) The cof ina l i ty  of a cut C is the pair (~, A) with s the cofinality of C -  

and A the coinitiality of C + (i.e., the "cofinality to the left"). If the cut is 

not a Dedekind cut, then one includes 0 and 1 as possible values for these 

invariants. 

(3) A cut of cofinality (s, A) is s y m m e t r i c  if ~ = A. 

(4) A real closed field is s y m m e t r i c a l l y  c o m p l e t e  if it has no symmetric 

cuts. 

(5) A cut is pos i t ive  if C -  M/4+ is nonempty. 

We will need to consider some more specialized properties of cuts. 

Definition 2.3: Let K be a real closed field, C a cut in K.  

(1) The cut C is a Sco t t  cu t  if it is a Dedekind cut, and for all r > 0 in K,  

there are elements a E C - ,  b E C + with b - a < r. 

(2) The cut C is add i t ive  if C -  is closed under addition and contains some 

positive element. 

(3) The cut C is mul t ip l i ca t ive  if C -  M K + is closed under multiplication 

and contains 2. 

(4) Cadd is the cut with left side {r E K : r + C -  C_ C-} .  
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(5) Cmlt is the cut with left side {r E K : r .  (C -  M K+) C_C_ C - } .  

Observe that  Scott cuts are symmetric. If C is a positive Dedekind cut which 

is not a Scott cut, then Cad d is an additive cut, while if C is an additive cut 

which is not a multiplicative cut, then Cmlt is a multiplicative cut. 

2.2. REALIZATION. If K C_ L are ordered fields, then a cut C in K is said to 

be rea l i zed ,  or filled, by an element a of L if the cut induced by a on K is the 

cut C. 

LEMMA 2.4 ([1]): Let K be a real closed field. Then there is a real closed field 

L extending K in which every Scott cut has a unique realization, and no other 

Dedekind cuts are filled. 

This is called the S c o t t  c o m p l e t i o n  of K,  and is strictly analogous to the 

classical Dedekind completion. The statement found in [1] is worded differently, 

without referring directly to cuts, though the relevant cuts are introduced in 

the course of the proof. The result is also given in greater generality there. 

LEMMA 2.5: Let K be a real closed field, C a multiplicative cut in K ,  and L the 

real closure of K(x) ,  where x realizes the cut C. Then for any y E L realizing 

the same cut, we have x 1/n < y < x n for some n. 

Proof  Let OK be {a E K : [a[ E C - } ,  and let OL be the convex closure in L 

of OK. Then these are valuation rings, corresponding to valuations on K and 

L which will be called VK and VL respectively. 

The value group FK of VK is a divisible ordered abelian group, and the value 

group of the restriction of VL to K ( X )  is F K �9 Z'), with 7 = VL(X) negative, 

and infinitesimal relative to F~.  The value group of VL is the divisible hull of 

Fg �9 ~'~. 

Now if y E L induces the same cut C on K, then vL(y) = qVL(X) for some 

positive rational q. Hence u = y / x  q is a unit of OL, and thus u, u -I  < x ~ for 

all positive rational e. So x q-e < y < X qWe and the claim follows. I 

LEMMA 2.6: Let K C_ L be real closed fields, and C an "additive cut in L. Let 

C' and C'~l t be the cuts induced on K by C and Cmlt respectively. Suppose 
! 

that C/nlt = (C )mlt, and that x, y E L are two realizations of  the cut C', with 

x E C -  and y E C +. Then y / x  induces the cut C/nit on K .  

Proof  If a E K and ax > y, then a E (Cmlt) ~-, by definition, working in L. 
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! 
On the other hand, i f a  E K and ax < y, then a E [(C)mlt] , which by 

hypothesis is (C'mlt)-. I 

LEMMA 2.7: Let K C_ L be real closed fields, and C a positive Dedekind cut in 
! 

L which is not additive. Let C' and Cad d be the cuts induced on K by C and 

! ~ C ! Cadd respectively. Suppose that Cad d ( )add. Suppose that x, y E L are two 

realizations of the cut C', with x E C -  and y E C +. Then y - x induces the 
! 

C U t  Cad d o n  K .  

Proo~ If a E K and a + x _> y, then a E (Cadd) +, by definition, working in L. 

On the other hand, if a E K and a + x < y, then a E [(C')add]-, which by 

hypothesis is (C~dd)-. I 

2.3. INDEPENDENT CUTS. We will rely heavily on the following notion of 

independence. 

Definition 2.8: Let K be a real closed field, and C a set of cuts in K.  We say 

that  the cuts in C are d e p e n d e n t  if for every real closed field L containing 

realizations ac (C E C) of the cuts over K,  the set {ac : C E C} is algebraically 

independent over K.  

The following merely rephrases the definition. 

LEMMA 2.9: Let K be a real closed field and C a set of cuts over K.  Then the 

following are equivalent. 

(1) C is independent. 

(2) For each set Co C_ C, and each ordered field L containing K ,  i f  ac  E L 

is a realization of the cut C for each C E Co, then the real closure of 

K ( a c  : C E Co) does not realize any cuts in C \ Co. 

Note that  this dependence relation satisfies the Steinitz axioms for a depen- 

dence relation. We will make use of it to realize certain sets of types in a 

controlled and canonical way. 

LEMMA 2.10: Let K be a real closed field, and C a set of cuts over K.  Then 

there is a real closed field L generated over K (as a real closed field) by a set of 

realizations of some independent family of cuts included in C, in which all of the 

cuts C are realized. Fbrthermore, such an extension is unique up to isomorphism 

over K.  Moreover, L can be embedded into L r over K i f  L I is a real closed field 

extending L and realizing every cut in C. 
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Proof: Clearly we must take L to be the real closure of K(ac  : C E Co), where 

Co is some maximal independent subset of C; and equally clearly, this works. 

It remains to check the uniqueness. This comes down to the following: for 

any real closed field L extending K,  and for any choice of independent cuts 

C1 , . . . ,  Cn in K which are realized by elements a l , . . . ,  an of L, the real closure 

of the field K ( a l , . . . , a n )  is uniquely determined by the cuts. One proceeds 

by induction on n. The real c losure/~ of K(an) is determined by the cut Ca; 

and as none of the other cuts are realized in it, they extend canonically to cuts 

C[, . . . ,  C'n_I over /~', which are independent o v e r / ( .  At this point induction 

applies. I 

LEMMA 2.11: Let K be a real closed field, and C a set of Dedekind cuts in K.  

Suppose that C is a Dedekind cut of cofinMity (~, A) which is dependent on C, 

and let Co be the set {C' E C : cof(C') = (~, A) or (,~, ~)}. Then C is dependent 

on Co, and in particular Co is nonempty. 

Proof: It is enough to prove this for the case that  C is independent. If this 

fails, we may replace the base field K by the real c lo su re / f  over K of a set of 

realizations of Co. Then since none of the cuts in C \ Co are realized, and C is 

not realized, these cuts extend canonically to cuts over/~',  and hence we may 

suppose Co = 0. We may also suppose C is finite, and after a second extension of 

K we may even assume that  C consists of a single cut Co. This is the essential 

case .  

So at this point we have a realization a of Co over the real closed field K,  

and a realization b of C over K,  with b algebraic, and hence definable, over a, 

relative to K.  Thus b is the value at a of a K-definable function, not locally 

constant near a, and by Fact 2.1 it follows that  there is an interval about b 

with endpoints in K which is order isomorphic or anti-isomorphic to an interval 

about a, with the cuts corresponding. This contradicts the supposition that  Co 

has become empty, and proves the claim. I 

For our purposes, the following case is the main one. We combine our previous 

lemma with the uniqueness statement.  

PROPOSITION 2.12: Let K be a real dosed field, and C a maximal independent 

set of symmetric cuts in K.  Let L be an ordered field containing K together 

with realizations ac of each C E C. Then the real closure of K(ac  : C C C) 

reMizes the symmetric cuts of K and no others. Furthermore, the result of this 

construction is unique up to isomorphism. 
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Evidently, this construction deserves a name. 

Definition 2.13: Let K be a real closed field. A symmet r i c  hull of K is a real 

closed field generated over K by a set of realizations of a maximal independent 

set of symmetric cuts. 

While this is unique up to isomorphism, there is certainly no reason to expect 

it to be symmetrically complete, and the construction will need to be iterated. 

The considerations of the next section will help to bound the length of the 

iteration. 

LEMMA 2.14: Let K be a real dosed field, and L its symmetric hull. Then 

every Scott cut in K has a unique realization in L. 

Proof: Recall that every Scott cut is symmetric. One can form the symmetric 

hull of K by first taking its Scott completion K1, realizing only the Scott cuts 

(uniquely), and then taking the symmetric hull of K1. | 

3. Height  and dep th  

Definition 3.1: Let K be a real closed field. 

(1) The height  of K, h(K), is the least ordinal a for which we can find a 

continuous increasing sequence Ki (i <_ a) of real closed fields with K0 

countable, Ks = K, and Ki+l generated over Ki, as a real closed field, 

by a set of realizations of cuts which are independent. 

(2) Let h+(K) be max([h(K)[+,R1) (R1 is the first uncountable cardinal 

strictly greater than h(K)). 

Observe that the height of K is at most [K[ (or is oo, which by 3.3 does 

not occur). We need to understand the relationship of the height of K with its 

order-theoretic structure, which for our purposes is controlled by the following 

parameter. 

Definition 3.2: Let K be a real closed field. The dep th  of K, denoted d(K), is 

the least regular cardinal n greater than the length of every strictly increasing 

sequence in K. 

Observe that the depth is uncountable. The following estimate is straightfor- 

ward, and what we will really need is the estimate in the other direction, which 

will be given momentarily. 
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LEMMA 3.3: Let K be a real closed field. Then h(K) <_ d(K). 

Proo~ One builds a continuous tower Ks  of real closed fields starting with 

any countable subfield of K,  and realizing maximal sets of independent cuts at 

each stage. If this continues past ~ = d(K),  then there is a cut over K~ filled 

at stage n by an element x E K.  Then the cut determined by x over each Ks  

for c~ < n is filled at stage c~ + 1 by an element y~. Those ya lying below x 

form an increasing sequence, by construction, which is therefore of length less 

than ~; and similarly there are fewer than ~ elements y~ > x, so we arrive at a 

contradiction. I 

PROPOSITION 3.4: Let K be a real closed field. Then d(K) <_ h+(K). 

Proof." Let ~ > h(K) be regular and uncountable, and let Ks (a <_ h(K)) be a 

continuous increasing chain of real closed fields, w i th / to  countable, I(h(K) = K, 
and Ki+l generated over Ki, as a real closed field, by a set of realizations of 

independent cuts. 

For c~ <_ h(K) and X C_ K,  let K~,x be the real closure of Ks(X)  inside K.  

We recast our claim as follows to allow an inductive argument. 

For X C h" with I x ]  < n, and any a <_ h(K), we have d(K~,x) <_ ~. 

Now this claim is trivial for ct = 0 as K0 is countable, and the claim passes 

smoothly through limit ordinals up to h(K), so we need only consider the pas- 

sage from c~ to /~ = c t + l .  So KZ is Ka,z  with S a set of realizations of 

independent cuts over Ks ,  and similarly KZ,x is Ka,xus. 
Consider the claim in the following form: 

d(Ka,xuso) <_ t~ for So C S. 

In this form, it is clear if [So[ < ~, as it is included in the inductive hypothesis 

for a, and the case [So[ >__ ~ reduces at once to the case IS0[ = ~. So we now 

assume that  So = (si : i < ~) is a set of realizations of independent types. 

We can find a subset $1 of So of cardinality Ro + IX01 such that: 

(a) if s~ E So \ $1 then the cut Ci which si induces on K s  is not realized in 

the real closure of K "  of Ks  (Xo U $1); 

(b) the cuts which the si E So \ $1 induce on K "  form an independent family. 

Then after moving $1 into X,  we may suppose that  So is a set of realizations 

of cuts which are independent over K~,x. 
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For ~ < a, let Lr = K,,xu{s~:~<~} and let L = L~. We have d(Lr < a for 

< g, and we claim d(L) <_ a. 

Let Ci be the cut realized by si over L0. Note that  Ci extends canonically to 

a cut C~ j on Kj for all j _~ i, and for fixed j ,  the cuts C~ are independent for 

i>_j.  
Now suppose, toward a contradiction, that  we have (ai : i < a) increasing 

in L, and let B~ denote the cut induced on Lr by ai. With ~ held fixed, and 

with i varying, as d(L~) ~_ a we find that  the cuts B~ stabilize for large i (and 

furthermore, a i r  L~). Accordingly, for each c we may select j~ < a such that  

the cuts B~ coincide for all i _) j~. 

Now fix a limit ordinal 5 < g such that  for all ~ < 5 we have j~ < 5. We 

B ~ - may also require that  ai E L5 for i < 5. Then (B~)-  = U~<5( j~)  , and the 

cofinality from the left of B5 5 is cof(5) 

Now a5 is algebraic over Ls(si : i E Io) for some finite subset I0 of [5, a), and 

hence also over Lr : i C Io) for some c < 5. Thus the cut B} depends on the 

cuts C~ (i E I0) over L~. As B} = B}~ is realized in Ls, it follows that  this cut 

is also dependent on the sets {C~ : i < 5} of cuts over L~. But the cuts C~ for 

i > ~ are supposed to be independent over L~, a contradiction. | 

PROPOSITION 3.5: Let K be a real closed field. Then h(K) < [K[ < 2 jh(K)]. 

Proof: The first inequality is clear. For the second, let c~ = h(K),  a = lal +R0, 

and let Ki (i < a) be a chain of the sort afforded by the definition of the height. 

We show by induction on i that  IKil < 2% Only successor ordinals i = j + 1 

require consideration, where we suppose IKNI < 2 ~. 
Each generator a of Ki over Kj  corresponds to a cut C~ in Kj,  and each 

such cut is determined by the choice of some cofinal sequence S~ in C~-. Such a 

sequence Sa may be taken to have order type a regular cardinal, and will have 

length less than d(K). Since d(K) < h+(K), we find that  the order type of 

S~ is at most a. So the number of such sequences is at most ~ < ~  IKjl ~ < 

• = 2 . 

4. P r o o f  o f  t h e  T h e o r e m  

We now consider the following construction. Given a real closed field K,  we 

form a continuous increasing chain Ka by setting K0 = K,  taking K~+I to be 

the symmetric hull of Ks  in the sense of Definition 2.13, and taking unions at 

limit ordinals. 
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If at some stage Ka is symmetrically complete, that  is Ka = Ka+l ,  then we 

have the desired symmetrically complete extension of K,  and furthermore our 

extension is prime in a natural sense. We claim in fact: 

PROPOSITION 4.1: 

(1) For K a real ciosed tield, if ~ = max(h+(K),R2) and K~ (a <_ ~) is the 

associated continuous chain of symmetric hulls of length ~ + 1, then K~ 

is symmetrically complete. 

(2) Also 
(i) IK~I _< 2 h+(K)+R1, and 

(ii) if  K'  is a symmetrically complete extension of K then K~ can be 

embedded into K ~ over K.  

(iii) K is unbounded in K~ (and no non-Dedekind cut of K is realized 

in K~ and no nonsymmetric Dedekind cut of K is realized in K~). 

The proof of Proposition 4.1 occupies the remainder of this section. 

LEMMA 4.2: Suppose that K is a real closed l~eld, and that (K~) is a continuous 

chain of iterated symmetric hulls of any length. Let x E K~ \ K with a > 0 

arbitrary. Then the cut induced on K by x is symmetric. 

Proof." Let/3 be minimal such that  the cut in question is filled in g ~ +  1 . Then 

the cut induced on KZ by x is the canonical extension of the cut induced on K 

by x, and is symmetric by Proposition 2.12. | 

We now begin the proof by contradiction of Proposition 4.1(1). We assume 

therefore that  the chain is strictly increasing at every step up to K~, and that  

there is a symmetric cut C over K~. Here n _> R2 is regular and greater than 

h(K); in particular n _> d(K) by 3.4. Furthermore, as n > h(K),  we can view 

the chain Ka as a continuation of a chain [(~ (i <_ h(K))  of the sort occurring 

in the definition of h(K),  with h'h(K) = Ko; then the concatenated chain gives 

a construction of Ka of length at most h(K)  + a < n, and hence h(K~) < n for 

all a < n, and in particular d(K,~) <_ e; for all a < n by 3.4. 

For a < n, let Ca denote the cut induced on Ka by C. 

LEMMA 4.3: For any a < x~, the cut Ca is symmetric. 

Proof: Suppose Ca is not symmetric. Then the cut Ca is not realized in 

K~, by Lemma 4.2. Hence the cut C is the canonical extension of Ca to K~, 

contradicting its supposed symmetry. | 

In particular, the cut Ca is realized in Ka+l ,  and thus we have the following. 
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COROLLARY 4.4: For any limit ordinal a <_ ~, the two-sided cofinality of C~ is 

cof(~). 

After these preliminaries, we divide the analysis of the supposed cut C into 

a number of cases, each of which leads to a contradiction. 

(Case I) C is a Scott cut 

In this case, as d(K~) < tr for a < to, the set E of ~ < ~ for which C~ is a 

Scott cut is a closed unbounded subset of t~. 

Fix 5 E E. Then the Scott cut C5 is filled by a unique element of K5+1, by 

Lemma 2.14. So C5+1 cannot be symmetric, a contradiction. 

(Case II) C is a multiplicative cut 

Let a < ~ have uncountable cofinality (recall n >__ ~2). 

The cut Ca is realized in C~+1 by some element a. As C is multiplicative, 

either all positive rational powers of a lie in C - ,  or all positive rational powers 

of a lie in C +. 

On the other hand, Ka+l  may be constructed in two stages as follows. First 

realize all the cuts in a maximal independent set of symmetric cuts in Ka,  with 

the exception of the cut Ca, getting a field K~; then take the real closure of 
! Ka(a), where a fills the canonical extension of the cut Ca to K~. As seen 

in Lemma 2.5, there are only two cuts which may possibly be induced by C 

on Ka+l ,  and each has countable cofinality from one side, and uncountable 

cofinality from the other. 

So C~+1 is not symmetric, and this is a contradiction. 

(Case III) C is an additive cut 

Consider the set E of (f < n for which (Cs)mlt = (Cmlt)~, recalling Definition 

2.3(5). Taking into account that  the two-sided cofinality of Ca is less than n for 

all a < n, we find that  E is a closed and unbounded set in n. 

Fix 5 E E. As the cofinality of C from either side is n, hence is greater than 

cf(5), the cofinality of C5, we may take x5 E C - ,  y5 E C +, both of which induce 

C5 on K~. By Lemma 2.6, the element ys/x5 fills the cut (Cmlt)~. In particular 

(Cmlt)5 is symmetric for 5 E E. 
Now consider what happens as 5 increases in E. Thinning E, we can extract 

a decreasing sequence y5 and an increasing sequence x~, so that  z5 = (ys/xs) is 

a decreasing sequence with z5 e (Cmlt) +. Accordingly the cofinality of (Cmlt) 

from the right is n. 
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Now if the cofinality of Cmlt from the left is also a, then we contradict Case 

II. On the other hand, if the cofinality of Cmlt from the left is less than ~, then 

from some point onward this cofinality stabilizes; but then, choosing 5 large 

and of some other cofinality (again, since a _> R2 this is possible), we contradict 

Lemma 4.3. 

(Case IV) C is a positive Dedekind cut, but not a Scott cut 

One argues as in the preceding case, considering Cad d and using Lemma 2.7, 

which leads to a symmetric additive cut and thus a contradiction to the previous 

case. 

As no cases remain, Proposition 4.1(1) is proved, and thus the construction 

of a symmetrically complete extension terminates. 

As for clause (i) of Proposition 4.1(2), to estimate the cardinality of the 

resulting symmetrically complete extension, recall that  it has height at most ~ = 

max(h+(K),  R2) _< max(IKI +, R2) and hence cardinality at most 2 ~. Moreover, 

similarly for any ct < a, IK I ___ 2h+(K)+Sl hence 

c~<~ a<~ c~<~ 

For clause (ii) of Proposition 4.1(2), we define an embedding ha of Ks  into 

K ' ,  increasing continuously with a for c~ < ~. For cr = 0, ho is the identity; for 

a limit take the union and for c~ = ~ use 2.10. 

Clause (iii) of Proposition 4.1(2) is easy too. lb.1 

5. C o n c l u d i n g  r e m a r k s  

It should be clear that  there are considerably more general types of closure that  

can be constructed in a similar manner. Let O be a class of possible cofinalities 

of cuts, that  is pairs of regular cardinals, and suppose that  O is symmetric 

in the sense that  (01,02) �9 O implies (02,01) �9 O. Then we may consider O- 

constructions in which maximal independent sets of cuts, all of whose cofinalities 

are restricted to lie in O, are taken. In order to get such a construction to 

terminate, all that  is needed is the following: (a) for all regular 01, there is 0e 

such that  the pair (01,02) is not in O; (b) for some regular ~ _> h(K) + ~2, for 

every 01 regular 02 < ~, there is a 02 < a such that  (01,02) r O. The proof is 

as above; in the symmetric case, Osy m consists of all pairs (0, 0) of equal regular 

cardinals. Clearly, we may make the closure to be quite as large as we need and 

as in (b) above. Also, in the proof of Proposition 4.1 in the multiplicative 
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case, we choose 6 such that (R0, cf(5)) ~ O, but, of course, change the cardinality 

bound. 

Under the preceding mild conditions, such a O-construction provides an 

"atomic" extension of the desired type. So we have O-closure, and it is prime 

(as in clause (ii) of Proposition 4.1(2)). We also can change the cofinality of K. 

References  

[1] D. Scott, On complete ordered fields, in Applications of Model Theory to 
Algebra, Analysis, and Probability (W. A. J. Luxemburg, ed.), Holt, Rinehart, 
and Winston, New York, 1969, pp. 274-278. 


